Home
Class 11
MATHS
int(1/e)^(e^(2))|(ln x)/(x)|dx=...

int_(1/e)^(e^(2))|(ln x)/(x)|dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx

int_((1)/(e))^(1)|(ln x)/(x)|dx=

What is int_(e^(-1))^(e^(2)) |(ln x)/(x)|dx equal to ?

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int_(1)^(e)(ln x)/(x^(2))dx=

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx