Home
Class 12
MATHS
" The value of the integral "int(1/e)^(e...

" The value of the integral "int_(1/e)^(e)|(ln x)/(x)|dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(1)^(e ) (log x)^(2)dx is -

The value of integral int_(e^(-1))^(e^2) |(log_e x)/(x)| dx is :

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is