Home
Class 11
MATHS
" Let "I(n)=int x^(n)cos axdx(1)J(n)=int...

" Let "I_(n)=int x^(n)cos axdx_(1)J_(n)=int x^(n)sin axdx" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int x^(n)cos axdx and I_(n)=int x^(n)sin axdx then show that.(1)aI_(n)=x^(n)sin ax-nI_(n-1)

int x^(n-1)sin x^(n)dx

int sin ^ (2) axdx

int x^(3)cos x^(4)dx int nx^(n-1)cos x^(n)dx

int x cos ec^(2)axdx

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then