Home
Class 11
MATHS
If lim(x->2^-) (ae^(1/|x+2|)-1)/(2-e^(1/...

If `lim_(x->2^-) (ae^(1/|x+2|)-1)/(2-e^(1/(|x+2|)))= lim_(x->2^+)sin ((x^4-16)/(x^5+32))`, then a is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 2^-) (a-e^(1/(|x+2|)))/(1-2e^(1/(|x+2|)))=lim_(x->2^+ ) sin((x^4-16)/(x^5+32)) then a is

If lim_(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim_(xto-2^(+)) sin((x^(4)-16)/(x^(5)+32)), then a is

lim_(x rarr2^(-))(ae^((1)/(|x+2|))-1)/(2-e^((1)/(x+2|)))=lim_(x rarr2^(+))sin((x^(4)-16)/(x^(5)+32))

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

lim_ (x rarr-2 ^ (+)) (x ^ (2) -1) / (2x + 4)

Lim_(x rarr2)(x^(5)-32)/(x^(2)-4)

lim_(x rarr oo)(e^(x^(2))-1)/(e^(x^(2))+1)=1

lim_(x rarr0)((1)/(x sin^(-1)x)-(1-x^(2))/(x^(2)))