Home
Class 12
MATHS
I(n)=int x^(n)cos axdx(1)J(n)=int x^(n)s...

I_(n)=int x^(n)cos axdx_(1)J_(n)=int x^(n)sin axdx_(" then ")

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int x^(n)cos axdx and I_(n)=int x^(n)sin axdx then show that.(1)aI_(n)=x^(n)sin ax-nI_(n-1)

int x^(n-1)sin x^(n)dx

int sin ^ (2) axdx

int x^(3)cos x^(4)dx int nx^(n-1)cos x^(n)dx

int x cos ec^(2)axdx

int x ^ (2n-1) cos x ^ (n) dx

If n(ne 1) in N and I_(n) = int tan^(n) x dx then I_(n)+I_(n-2) =