Home
Class 10
MATHS
" Let "I(n)=int x^(n)cos axdx,J(n)=int x...

" Let "I_(n)=int x^(n)cos axdx,J_(n)=int x^(n)sin axdx" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int x^(n)cos axdx and I_(n)=int x^(n)sin axdx then show that.(1)aI_(n)=x^(n)sin ax-nI_(n-1)

I_(n)=int sin^(n)xdx

int sin ^ (2) axdx

int x^(3)cos x^(4)dx int nx^(n-1)cos x^(n)dx

int x cos ec^(2)axdx

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

LetI_(1)=int_(0)^(n)[x]dx and I_(2)=int_(0)^(n){x}dx where [x] and {x} are integral and fractionalparts of x and n in N-{1}. Then (I_(1))/(I_(2)) is equal to