Home
Class 12
MATHS
Let vec r1, vec r2, vec r3, , vec rn b...

Let ` vec r_1, vec r_2, vec r_3, , vec r_n` be the position vectors of points `P_1,P_2, P_3 ,P_n` relative to the origin `Odot` If the vector equation `a_1 vec r_1+a_2 vec r_2++a_n vec r_n=0` hold, then a similar equation will also hold w.r.t. to any other origin provided a. `a_1+a_2+dot+a_n=n` b. `a_1+a_2+dot+a_n=1` c. `a_1+a_2+dot+a_n=0` d. `a_1=a_2=a_3dot+a_n=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec r_1, vec r_2, vec r_3, .....vec r_n be the position vectors of points P_1,P_2, P_3 ,......P_n relative to the origin O . If the vector equation a_1 vec r_1+a_2 vec r_2+.....a_n vec r_n=0 hold, then a similar equation will also hold w.r.t. to any other origin provided a) a_1+a_2+......a_n=n b) a_1+a_2+....a_n=1 c) a_1+a_2+....a_n=0 d) a_1=a_2=a_3+a_n=0

Let vecr_1, vecr_2,……vecr_n be the position of points P_1,P_2,………,P_n respectively relative to an origin O. Show that if the vector equation a_1vecr_1+a_2vecr_2+..+a_nvecr_n=vec0 holds, then a similar equation will also hold good wilth respect to any other origin if a_1+a_2+......+a_n=0

Write the condition for the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\ to be intersecting.

Write the formula for the shortest distance between the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\

The equation of the plane containing the lines vec r = vec (a_1) + lambda vec b and vec r = vec (a_2) + mu vec b is.............

Find the number of all three elements subsets of the set {a_1, a_2, a_3, a_n} which contain a_3dot

Find the number of all three elements subsets of the set {a_1, a_2, a_3, a_n} which contain a_3dot

If a_1. a_2 ....... a_n are positive and (n - 1) s = a_1 + a_2 +.....+a_n then prove that (a_1 + a_2 +....+a_n)^n ge (n^2 - n)^n (s - a_1) (s - a_2)........(s - a_n)

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :