Home
Class 12
MATHS
" (1.) The integral "int(sec^(2)x)/((sec...

" (1.) The integral "int(sec^(2)x)/((sec x+tan x)^(9/2))dx" equals (for some arbitrary constant "k" ) "

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K )

int (sec^(2)x)/((sec x+ tan x)^(5))dx=

The integral intsec^2x/(secx+tanx)^(9//2) dx equals (for some arbitrary constant K)

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

The integral (sec^(2)x)/((sec x+tan x)^((9)/(2))) is equal to

int(sec x+tan x)^(2)dx

int(sec x)/((sec x+tan x)^(2))dx