Home
Class 11
MATHS
Evaluate the following limits using sand...

Evaluate the following limits using sandwich theorem: `lim_(x->oo)([x])/x ,w h e r e[dot]` represents greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits using sandwich theorem: lim_(x rarr oo)(log_(e)x)/(x)

lim_(x->oo)[x^2/(sinxtanx)],where [.] denotes greatest integer function.

Evaluate the following limits : lim_(x to 0)e^(x)

Evaluate: int_(0)^(oo)[2e^(-x)]dx, where [x] represents greatest integer function.

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

Evaluate: int_(-100)^(100)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

If a>0lim_(x rarr oo)([ax+b])/(x) is where [.] represents the Greatest integer function

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.