Home
Class 11
MATHS
Show that the square to (sqrt(26-15sqrt(...

Show that the square to `(sqrt(26-15sqrt(3)))//(5sqrt(2)-sqrt(38+5sqrt(3)))` is a rational number.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 is

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

Multiply : (sqrt(3)+sqrt(2)) (5sqrt(2)+sqrt(3))

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

The value of the expression sqrt(4+sqrt(15))+sqrt(4-sqrt(15))-sqrt(12-4sqrt(5)) is a. An irrational number b.A negative integer c.A natural number d.A non integer rational number

Show that (sqrt(3)+sqrt(5))^(2) is an irrational number .

(sqrt(15)+sqrt(35)+sqrt(21)+5)/(sqrt(3)+2sqrt(5)+sqrt(7))=?