Home
Class 11
MATHS
Evaluate the limits using the expansion ...

Evaluate the limits using the expansion formula of functions `lim_(x->0) (sinx+log(1-x))/x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the limits using the expansion formula of functions lim_(x rarr0)(e^(h-1-x))/(x^(2))

Evaluate the limits using the expansion formula of functions lim_(x rarr0){(sin x-x+(x^(3))/(6))/(x^(5))}

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

lim_(x rarr 0) (1+sinx-cosx+log_e(1-x))/x^2

lim_(x rarr0)(log(1-(x)/(2)))/(x)

Evaluate : lim_( x -> 0 ) ( ( sinx - x ) /x^2 )

Applying the L.Hospital rule , find the limits of the following functions : lim_(xto0) (ln(1+x^(2)))/(cos3x-e^(-x))

Applying the L.Hospital rule , find the limits of the following functions : lim_(xto0) (e^(ax)-e^(-2ax))/(ln(1+x))

lim_(x rarr0)sinx/log_(e)(1+x)^(1/2)

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))