Home
Class 11
MATHS
In a triangle ABC, if (2(sin B-sin C))/(...

In a triangle ABC, if `(2(sin B-sin C))/(cosB+cosC)=sinA/(1-cosA)` then the value of `b/c` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

if sinA +sinB=C and cosA+cosB=D and C , D!=0 then the value of sin(A+B) is equal to

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In a triangle ABC the expression a cosB cosC+b cosA cosB equals to :