Home
Class 11
MATHS
zo is one of the roots of the equation z...

zo is one of the roots of the equation `z^n cos theta0+ z^(n-1) cos theta2 +. . . . . . + z cos theta(n-1) + cos theta(n)` = 2, where `theta in R` , then (A) |z0| <`1/2` (B) |z0| > `1/2` (C) |z0| = `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

z0is a root of the equation z^(n)cos[theta o]+z^(n-1)cos[theta1]+z^(n-2)cos theta[theta2]+......+z^(n)cos[theta[n-1]]+cos theta[n]=2 where Theta[i]in R

The distance of the roots of the equation tan theta_(0) z^(n) + tan theta_(1) z^(n-1) + …+ tan theta_(n) = 3 from z=0 , where theta_(0) , theta_(1) , theta_(2),…, theta_(n) in [0, (pi)/(4)] satisfy

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

All the roots of equation z^n costgheta_0 +z^(n-1) costheta_1 +z^(n-2) costheta_2+…+costheta_n=2, when theta_0, theta_1, theta_2, ……theta_n epsilon R lie (A) on the line Re[(3+4i)z]=0 (B) inside the circel |z|=1/2 (C) outside the circle |z|= 1/2 (D) on the circle |z|= 1/2

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

Prove that cos theta* cos 2theta* cos2^(2)theta * cos2^(3)theta x... cos 2^(n-1) theta = 1/2^(n) , when theta = pi/(2^(n)+1) .

(sin theta_ (1) + i cos theta_ (1)) (cos theta_ (2) + i sin theta_ (2)) ...... (sin theta_ (n) + i cos theta_ (n)) = a + ib, a ^ (2) + b ^ (2) =

cos theta+cos2 theta+cos3 theta+......+cos(n-1)theta+cos n theta=