Home
Class 11
MATHS
If a0, a1, a2, a3 are all the positive,...

If `a_0, a_1, a_2, a_3` are all the positive, then `4a_0x^3+3a_1x^2+2a_2x+a_3=0` has least one root in `(-1,0)` if (a) `a_0+a_2=a_1+a_3 ` and `4a_0+2a_2>3a_1+a_3` (b) `4a_0+2a_2<3a_1+a_3` (c) `4a_0+2a_2=3a_1+a_0`and `4a_0+a_2lta_1+a_3` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a_2 a_3)/(a_1 a_4) = (a_2 + a_3)/(a_1 + a_4) = 3 ((a_2 - a_3)/(a_1 - a_4)) then a_1, a_2, a_3, a_4 are in

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then common ratio of G.P can be

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

The average of a_1, a_2, a_3, a_4 is 16. Half of the sum of a_2, a_3, a_4 is 23. What is the value of a_1