Home
Class 12
MATHS
If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6...

If `f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx)` where `0 < x < 1,` then (A) both 'f' and 'g' are increasing functions

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

If u=f(x^3),v=g(x^2),f'(x)=cosx, and g'(x)=sinx, then (du)/(dv) is

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

Let f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2}+sinpix , where { } representsfractional function, then the period of

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

If f(x)=sinx+cosx,g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain :

If f(x)=sinx+cosx, g(x)=x^(2)-1, then g(f(x)) is invertible in the domain

If f(x)=x^(2), g(x)=x^(2)-5x+6 then (g(2)+g(2)+g(0))/(f(0)+f(1)+f(-2))=