Home
Class 12
MATHS
If a curve y=f(x) satisfies y''x^2+x(y')...

If a curve `y=f(x)` satisfies `y''x^2+x(y')^2=2x y',f(0)=0 and f'(1)=1,` then f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

A function y=f(x) satisfying f'(x)=x^(-(3)/(2)),f'(4)=2 and f(0)=0 is

If f((x)/(y))=(f(x))/(f(y)),AA y,f(y)!=0 and f'(1)=2, find f(x)

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f satisfies the relation f(x+y)+f(x-y)=2f(x)f(y)AA x,y in K and f(0)!=0; then f(10)-f(-10)-

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AA x,y in R and f(0)!=0 ,then f(x) is an even function f(x) is an odd function If f(2)=a, then f(-2)=a If f(4)=b, then f(-4)=-b

Let f((x+y)/(2))=1/2 |f(x) +f(y)| for all real x and y, if f '(0) exists and equal to (-1), and f(0)=1 then f(2) is equal to-