Home
Class 11
MATHS
("lim")(xrarroo)(1/e-x/(1+x))^x is equal...

`("lim")_(xrarroo)(1/e-x/(1+x))^x` is equal to (a) `e/(1-e)` (b) 0 (c) `e/(e^(1-e))` (d) does not exist

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(x rarr oo)(1+e^(-x))^(e^(x))=

lim_(xto0) e^(-1//x) is equal to

lim_(x rarr oo)x(((x)/(x+1))^(x)-(1)/(e)) is equal to (A) (-1)/(2e) (B) (1)/(2e) (C) (1)/(e) (D) oo

For x in R,lim_(x rarr oo)((x-3)/(x+2))^(x) is equal to (a) e (b) e^(-1)(c)e^(-5)(d)e^(5)

lim_(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1) is equal to

("lim")_(xvecoo)[(e/(1-e))(1/e-x/(1+x))]^xi s e^((1-e)) (b) e^(((1-e)/e)) (c) e^((e/(1-e))) (d) e^(((1+e)/e))

lim_(x rarr0)((1+tan x)/(1+sin x))^(csc x) is equal to e (b) (1)/(e)(c)1 (d) none of these