Home
Class 12
MATHS
The exhaustive set of values of x for wh...

The exhaustive set of values of `x` for which `log_((x-2)) [x + 1] > 2,` where `[.]` denotes the greatest integer function, are `(3,2+sqrt5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function: