Home
Class 11
MATHS
lim(xrarroo)((x+1)^(10)+(x+2)^(10)+...+(...

`lim_(xrarroo)((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10))` is equal to
(a) 0
(b) 1
(c) 10
(d) 100

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) ((x+2)^(10)+(x+4)^(10)+...+(x+20)^(10))/(x^(10)+1)= ______.

The value of lim_(n rarr oo)(sum_(r=1)^(100)(n+r)^(10))/(n^(10)+10^(10)) is equal to

lim_ (x rarr oo) ((x + 2) ^ (10) + (x + 4) ^ (10) ++ (x + 20) ^ (10)) / (x ^ (10) +1) =

Lim_(x rarr1)(x^(15)-1)/(x^(10)-1)

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

(0.1xx0.01xx0.001xx10^(7)) is equal to (1)/(10) (b) (1)/(100)(c)10(d)100

Statement-1 : lim_(xrarr oo) ((x+1)^10+(x+2)^10+.....+(x+100)^(10)10)/(x^10+9^10) Statement -2 : If f(x)and g(x) are polynomials of same degree, then lim_(xrarroo) (f(x))/(g(x))=("Coefficient of leading term in" f(x))/("Coefficient of leading term in" g(x))

lim_ (x rarr-1) [1 + x + x ^ (2) + ... + x ^ (10)]