Home
Class 11
MATHS
lim(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) ...

`lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) ` is equal to
(a)0
(b) 2
(c) 4
(d) `oo`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))

lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3)) is equal to

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

lim_(n rarr oo)((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

("Lim")_(n->oo)((1+tanpi/(2n))/(1+sinpi/(3n)))^n equal