Home
Class 12
MATHS
Using properties of determinants prove t...

Using properties of determinants prove that `|(1,1, 1+3x),(1+3y,1,1),(1, 1+3z,1)| =9(3xyz+xy+yz+zx) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants prove that ((1,1,1+3x),(1+3y,1,1),(1,1+3z,1)=9(3xyz+xy+yz+zx)

Using prperties of determinants, prove that : |(1,1,1+3x),(1+3y,1,1),(1,1+3z,1)| = 9(3xyz + xy + yz + zx) .

1,1,1+3x1+3y,1,11,1+3z,1]|=9(3xyz+xy+yz+zx)

Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2+1,yz),(zx,yz,z^2+1)|=1+x^2+y^2+z^2

|(1+x,1,1),(1,1+y,1),(1,1,1+z)|=xy+yz+zx+xyz

|{:(1+x,1,1),(1,1+y,1),(1,1,1+z):}|=xy+yz+zx+xyz

Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y^2+1,yz),(xz,yz,z^2+1)|=1+x^2+y^2+z^2

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

1+x,1,11,1+y,11,1,1+z]|=xy+yz+zx+xyz