Home
Class 11
MATHS
L=(lim)(x->a)(|2sinx-1|)/(2sinx-1)dot...

`L=(lim)_(x->a)(|2sinx-1|)/(2sinx-1)dotT h e n` limit does not exist when (a) `a=pi/6` (b) `L=-1 when a=pi` (c) `L=1 when a=pi/2` (d) `L=1 when a=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(x to pi//6) (2sin^2x+sinx-1)/(2sin^2x-3sinx+1)=

If lim_(xrarr0)(2ax+(a-1)sinx)/(tan^3x)=l ,then a+l is equal to

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

L i m i t\ l=(lim)_(x->oo)(pi/2-t a n^-1\ x)/(ln(1-1/x)) equals

f(x)=[(sinx)/x ,"w h e n"x!=0=2,"w h e n"x=0 sinx-, when x0/(x) =L= 2, when x=0

If lim_(x->0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0,where theta in (-pi,pi], then the value of theta is (a)+-pi/4 (b) +-pi/3 (c) +-pi/6 (d) +-pi/2

If L=lim_(xto(pi^(+))/2)(costan^(-1)(tanx))/(x-pi//2) then cos(2piL) is

Evaluate lim_(xto pi//2) (sinx-(sinx)^(sinx))/(1-sinx+log_(e)sinx) .