Home
Class 11
MATHS
If cosalpha+2cosbeta+3cosgamma=sinalpha+...

If `cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0`, then the value of `sin3alpha+8sin3beta+27sin3gamma` is sin(a+b+gamma) b. `3sin(alpha+beta+gamma)` c. `18"sin"(alpha+beta+gamma)` d. `sin(alpha+2beta+3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 then the value of sin 3alpha+8sin3beta+27sin 3gamma , is

If cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0 , then the value of cos3alpha+cos3beta+cos3gamma is

If cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 sin gamma y = 0 , then the value of sin 3alpha + 8 sin 3beta + 27 sin 3gamma is

cos alpha+cos beta+cos gamma=0sin alpha+sin beta+sin gamma=0 then the value of sin^(4)alpha+sin^(4)beta+sin^(4)gamma

If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha+beta+gamma=0 , then cos3alpha+8cos3beta+27sin3gamma=

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If cos alpha+cos beta+cos gamma=0 and also sin alpha+sin beta+sin gamma=0 then prove that

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to

If sin alpha+sin beta+sin gamma=0=cos alpha+cos beta+cos gamma, then the value of sin^(2)alpha+sin^(2)beta+sin^(2)gamma, is