Home
Class 11
MATHS
Let a ,b , c be the sides of a triangle...

Let `a ,b , c` be the sides of a triangle, where `a!=b!=c` and `lambda in R` . If the roots of the equation `x^2+2(a+b+c)x+3lambda(a b+b c+c a)=0` are real. Then a.`lambda<4/3` b. `lambda>5/3` c. `lambda in (1/3,5/3)` d. `lambda in (4/3,5/3)`

A

`lamda lt 4/3`

B

`lamda lt 5/3.`

C

`l epsilon(1/3,5/3)`

D

`lamda epsilon (4/3,5/3)`

Text Solution

Verified by Experts

`Dge0`
`4(a+b+c)^(2)-12lamda(ab+bc+ca)ge0`
`(a^(2)+b^(2)+c^(2))-(3lamda-2)(ab+bc+ca)ge0`
`:.(3lamda-2)le((a^(2)+b^(2)+c^(2)))/((ab+bc+ca))`
Since `|a-b|ltc`
`impliesa^(2)+b^(2)-2abltc^(2)`……i
`|b-c|lta`
`impliesb^(2)+c^(2)-2bclta^(2)`.......ii
`|c-a|ltb`
`impliesc^(2)+a^(2)-2caltb^(2)`..........iii
From Eqs i, ii and iii we get
`(a^(2)+b^(2)+c^(2))/(ab+bc+ca)lt2`............iv
FromEqs i and iv we get
`3lamda-2lt2implieslamdalt4/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b,c be the sides of a triangle. No two of them are equal and lambda in R If the roots of the equation x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0 are real, then (a) lambda 5/3 (c) lambda in (1/5,5/3) (d) lambda in (4/3,5/3)

For all lambda in R , The equation ax^2+ (b - lambda)x + (a-b-lambda)= 0, a != 0 has real roots. Then

If a,b,c, are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots,then (a)lambda (5)/(3)(c)lambda in((4)/(3),(5)/(3)) (d) lambda in((1)/(3),(5)/(3))

If a,b,c are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots.then

If a

If the points A(3, 9, 4), B(0, -1, -1), C(lambda, 4, 4), D(4, 5, 1) are coplanar, then lambda=

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

The values of lambda for which the function f(x)=lambda x^(3)-2 lambda x^(2)+(lambda+1)x+3 lambda is increasing through out number line (a) lambda in(-3,3)( b) lambda in(-3,0)( c )lambda in(0,3) (d) lambda in(1,3)