Home
Class 11
MATHS
If z1, z2 are two complex numbers (z1!=z...

If `z_1, z_2` are two complex numbers `(z_1!=z_2)` satisfying `|z1^2-z2^2|=| z 1^2+ z 2 ^2-2( z )_1( z )_2|` , then a.`(z_1)/(z_2)` is purely imaginary b. `(z_1)/(z_2)` is purely real c. `|a r g z_1-a rgz_2|=pi` d. `|a r g z_1-a rgz_2|=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 if z_1/z_2 is purely imaginary.

If z_1,z_2 are nonzero complex numbers then |(z_1)/(|z_1|)+(z_2)/(|z_2|)|le2 .

If z_(1) and z_(2) are two complex numbers such that z_(1)+2,1-z_(2),1-z, then

If z_1 , z_2 are nonreal complex and |(z_1+z_2)/(z_1-z_2)| =1 then (z_1)/(z_2) is

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)|+|z_(1)-z_(2)| then

If (5z_(1))/(7z_(2)) is purely imaginary then |(2z_(1)+3z_(2))/(2z_(1)-3z_(2))|=