Home
Class 12
MATHS
The number of integral value(s) of x sa...

The number of integral value(s) of `x` satisfying the equation `|x^4 .3^(|x-2|). 5^(x-1)|=-x^4 .3^(|x-2|). 5^(x-1)` is `2` b. `3` c. `1` d. infinite

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral value(s) of x satisfying the equation |x^(4).3|x-2|.5^(x-1)|=-x^(4).3^(|x-2|).5^(x-1) is 2 b.3 c.1d .infinite

The number of integral values of x satisfying |x^2-1|leq3 is

Number of integral value(s) of ' x ' satisfying the equation |2 x+1|+|5-2 x|=6 , is

Number of integral values of X' satisfying the equation 3^(|x+1)-2.3^(x)=2*|3^(x)-1|+1 are

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

The total number of integral value of x satisfying the equation x ^(log_(3)x ^(2))-10=1 //x ^(2) is

The number of integral values of x satisfying 5x-1<(x+1)^(2)<7x-3 is

The number of integral vaules of x satisfying 5x-1 lt (x+1)^(2) lt 7x-3 is