Home
Class 11
MATHS
If |z-3|=min{|z-1|,|z-5|}, then Re(z) eq...

If `|z-3|=min{|z-1|,|z-5|}`, then `Re(z)` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|= "min" {|z-1|, |z+1|} , then

If abs(z-3)=min{abs(z-1),abs(z-5)} , then Re(z) is equal to

If |z-2|=min{|z-1|,|z-5|}, where z is a complex number then

If |z-2|= "min" {|z-1|,|z-3|} , where z is a complex number, then

If |z+4i|=min{|z+3i|,|z+5i|, then z satisfies Im z=-(7)/(2)

If |z-1|=|z-5| and Re(z)=k ; then evaluate k

If arg ((z_(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z_(1)|=3 , then |z_(1)| equals to

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to

Let z be a complex number of maximum amplitude satisfying |z-3|=Re(z), then |z-3| is equal to

" 3.If "|z-1|=|z-5|" and "Re(z)=k;" then evaluate "k