Home
Class 12
MATHS
In a Delta ABC, prove that (sinA+sinB)(s...

In a `Delta ABC,` prove that `(sinA+sinB)(sinB+sinC)(sinC+sinA)>sinAsinBsinC.`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any DeltaABC , prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

In DeltaABC , prove that: sinB+sinC gt sinA

In DeltaABC , prove that: sinB+sinC gt sinA

In a triangle ABC, prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

if A, B, C are acute positive angles, then : ((sinA + sinB)(sinA + sinC)(sinA + sinC))/(sinA sinB sinC) is :

If a DeltaABC , the value of sinA+sinB+sinC is

In any DeltaABC , if (sinA+sinB+sinC)xx(sinA+sinB-sinC)=3sinAsinB , then