Home
Class 11
MATHS
Given ("lim")(xvec0)(f(x))/(x^2)=2,w h e...

Given `("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot]` denotes the greatest integer function, then `("lim")_(xvec0)[f(x)]=0` `("lim")_(xvec0)[f(x)]=1` `("lim")_(xvec0)[(f(x))/x]` does not exist `("lim")_(xvec0)[(f(x))/x]` exists

Promotional Banner

Similar Questions

Explore conceptually related problems

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

(lim)_(xvec(-1^-)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

(lim)_(xvec0)[(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function) a. 0 b. 1 c. -1 d. none of these

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be correct ("lim")_(xvec1)f(x)e xi s t s a=-2 ("lim")_(xvec-2)f(x)e xi s t s a=13 ("lim")_(xvec1)f(x)=4/3 ("lim")_(xvec-2)f(x)=-1/3