Home
Class 11
MATHS
Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] ...

Let `f(x)=(x^2-9x+20)/(x-[x])` (where `[x]` is the greatest integer not greater than `xdot` Then `("lim")_(xvec5)f(x)=1` `("lim")_(xvec5)f(x)=0` `("lim")_(xvec5)f(x)doe snote xi s t` none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(2)-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x), then

If f(x)=[x] , where [x] is the greatest integer not greater than x, then f'( 1^(+) )= . . .

If f(x)=[x] , where [x] is the greatest integer not greater than x, in (-4, 4), then f(x) is

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

lim_(x rarr5)f(x)=2 and lim_(x rarr5)g(x)=0, then lim_(x rarr5)(f(x))/(g(x)) does not exist.

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

Let f(x)=x(-1)^([1/x]);x!=0 where [.] denotes greatest integer function,then lim_(x rarr0)f(x) is :

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If f(x)={("sin"[x])/([x]),for[x]!=0 0,for[x]=0,w h e r e[x] denotes the greatest integer less than or equal to x , then ("lim")_(xvec0)f(x) is 1 (b) 0 (c) -1 (d) none of these