Home
Class 11
MATHS
If z1=5+12 ia n d|z2|=4,t h e n (a)ma...

If `z_1=5+12 ia n d|z_2|=4,t h e n` (a)maximum `(|z_1+i z_2|)=17` (b)minimum `(|z_1+(1+i)z_2|)=13+4sqrt(2)` (c)minimum `|(z_1)/(z_2+4/(z_2))|=(13)/4` (d)maximum `|(z_1)/(z_2+4/(z_2))|=(13)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-25i|le15 , then find (i) Maximum |z| (2) Maximum arg (z) (3) minimum |z| (4) Minimum arg (z)

If z_1 = 3i and z_2 = -1 -i , find the value of arg z_1/z_2 .

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If z_(1)= 4-3i and z_(2) = 3 + 9i " then " z_(1) -z_(2) is

If kgt1,|z_1|,k and |(k-z_1barz_2)/(z_1-kz_2)|=1 , then (A) z_2=0 (B) |z_2|=1 (C) |z_2|=4 (D) |z_2|ltk

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

If |z_(1)|=15adn|z_(2)-3-4i|=5, then a.(|z_(1)-z_(2)|)_(min)=5b*(|z_(1)-z_(2)|)_(min)=10c(|z_(1)-z_(2)|)_(max)=20d.(|z_(1)-z_(2)|)_(max)=25

If z_(1) =3 -4i and z_(2) = 5 + 7i ,verify (i) |-z_(1)| =|z_(1)| (ii) |z_(1) +z_(2)| lt |z_(2)|

If | z_ (1) | = | z_ (2) | = | z_ (3) | = 1 & z_ (1) + z_ (2) + z_ (3) = sqrt (2) + i then ((z_ (1) ) / (z_ (2)) + (z_ (2)) / (z_ (3)) + (z_ (3)) / (z_ (4))) =