Home
Class 11
MATHS
Let f(x)=a x^2+b x+a ,b ,c in Rdot If f...

Let `f(x)=a x^2+b x+a ,b ,c in Rdot` If `f(x)` takes real values for real values of `x` and non-real values for non-real values of `x` , then `a=0` b. `b=0` c. `c=0` d. nothing can be said about `a ,b ,cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax+b and the equation f(x)=f^(-1)(x) be satisfied by every real value of x, then

Let y^(2) = ((x+5)(x-3))/(x-1) , then all the real values of x, for which y has non-zero real values , are :

f(x)=sqrt((1)/(3-x-|x-3|)) is defined for (A) all real values of x (B) no real value of x (C) xgt3 (D) xlt3

Let f(x)=ax^(2)+bx+c where a,b and c are real constants.If f(x+y)=f(x)+f(y) for all real x and y, then

If the equation x^(2)+2ax+b(a-1)=0 has real roots for all real value of a and b is an integer, then

Let f(x)=a^(x)-x ln a,a>1. Then the complete set of real values of x for which f'(x)>0 is

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

Let f(x)=2x+1. Then the number of real number of real values of x for which the three unequal numbers f(x),f(2x),f(4x) are in G.P.is 1 b.2 c.0 d.none of these

If x is real then (x^(2)-x+c)/(x^(2)+x+2c) can take all real values if