Home
Class 12
MATHS
If A+B+C=pi, prove that : cosA + cosB-co...

If `A+B+C=pi`, prove that : `cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C= pi ,prove that :cosA+cosB-cosC=-1+4cosA/2cosB/2sinC/2.

In triangleABC,A+B+C=pi ,show that cosA+cosB-cosC=4cos(A/2)cos(B/2)sin(C/2)-1

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .

Prove that cosA -cosB -cosC =1-4sin(A/2)cos(B/2)cos(C/2) ,if A+B+C= pi

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos( (A+B)/2) cos((B+C)/(2) )cos( (C+A)/2)

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos, (A+B)/2 cos, (B+C)/(2) cos, (C+A)/2