Home
Class 12
MATHS
If A is a non-singular matrix, prove ...

If `A` is a non-singular matrix, prove that `(a d j\ A)^(-1)=(a d j\ A^(-1))` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a non-singular matrix, prove that (a d jA)^(-1)=(a d jA^(-1))dot

If A is a non-singular matrix,prove that (adjA)^(-1)=(adjA^(-1))

If A is a non-singular matrix,prove that (adjA)^(-1)=(adjA^(-1))

If A is a non-singular matrix then prove that A^(-1) = (adjA)/(|A|) .

If A is a non singular matrix; then prove that |A^(-1)|=|A|^(-1)

If is a non-singular matrix, then det (A^(1))=

If A is a non-singular matrix then |A^(-1)| =

If A is a non-singular matrix, prove that: a d j\ (A) is also non-singular (ii) (a d j\ A)^(-1)=1/(|A|)Adot