Home
Class 11
MATHS
lim(x -> oo)(x(log(x)^3)/(1+x+x^2) equal...

`lim_(x -> oo)(x(log(x)^3)/(1+x+x^2)` equals 0 (b) `-1` (c) 1 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) cos log((x-1)/(x))

lim_(x rarr oo)x(log(x+1)-log x)=

L=lim_(x rarr oo)((log x)/(x))^((1)/(x))

(log)_(x-1)x (log)_(x-2)(x-1) (log)_(x-12)(x-11)=2,x is equal to: 9 (b) 16 (c) 25 (d) none of these

lim_(x rarr0)((1+tan x)/(1+sin x))^(csc x) is equal to e (b) (1)/(e)(c)1 (d) none of these

lim_(x rarr0)[(log(1+x))/(x)]^((1)/(x)) equals-

(lim_(xto oo) ((x+3)/(x+1))^(x+1) is equal to

lim_(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

f(x)=(1n(x^2+e^x))/(1n(x^4+e^(2x)))dotT h e n lim_(x->oo)f(x) is equal to (a) 1 (b) 1/2 (c) 2 (d) none of these