Home
Class 11
MATHS
("lim")(xvec0)((2^m+x)^(1/m)-(2^n+x)^(1/...

`("lim")_(xvec0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/xi se q u a lto` `1/(m2^m)-1/(n2^n)` (b) `1/(m2^m)+1/(n2^n)` `1/(m2^(-m))-1/(n2^(-n))` (d) `1/(m2^(-m))+1/(n2^(-n))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(x->0) [(2^m +x)^(1/m)-(2^m+x)^(1/n)]/x a) 1/(m2^m)-1/(n2^n) b) 1/(m2^(m-1))-1/(n2^(n-1)) c) m/2^(m-1)-n/2^(n-1) d) none of these

(m)/(n)x^(2)+(n)/(m)=1-2x

If (2^(m+n))/(2^(n-m))=16,(3^(p))/(3^(n))=81 and a=2^(1//10) then (a^(2m+n-p))/((a^(m-2n+2p))^(-1))=

int(mx^(m+2n-1)-nx^(n-1))/(x^(2m+2n)+2x^(m+n)+1)dx is equal to

If (2^(m+n))/(2^(m-n))=16 and a=2^((1)/(10)) then ((a^(2m+n-p))^(2))/((a^(m-2n+2p)-1)^(-1))=

If m>1,n in N show that 1^(m)+2^(m)+2^(2m)+2^(3m)++2^(nm-m)>n^(1-m)(2^(n)-1)^(m)

2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5) +..} is equals to