Home
Class 12
MATHS
Lim(x->0) {x(1+acosx)-bsinx}/x^3=1 then...

`Lim_(x->0) {x(1+acosx)-bsinx}/x^3=1` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate find a and b if \ ("Lim")_(x->0)(x(1+acosx)-bsinx)/(x^3)=1

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

Find the values of a and b in order that lim_(xto0) (x(1+acosx)-bsinx)/(x^(3))=1.

F(x) is the function such that (lim)_(x->0)(f(x))/x=1\ a n d\ (lim)_(x->0)(x(1+acosx))/((f(x))^3)=1 , then find the value of a

(lim)_(x->0)(a x+xcosx)/(bsinx)

Let f(x) be a function such that ("lim")_(xvec0)(f(x))/x=1 and ("lim")_(xvec0)(x(1+acosx)-bsinx)/((f(x))^3)=1 , then b-3a is equal to

lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1 then