Home
Class 11
MATHS
If a^2 + b^2 - 1,m^2 +n^2 =1, then...

If `a^2 + b^2 - 1,m^2 +n^2 =1,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A D be a median of the A B Cdot If A Ea n dA F are medians of the triangle A B Da n dA D C , respectively, and A D=m_1,A E=m_2,A F=m_3, then (a^2)/8 is equal to (a) m_2^2+m_3^2-2m_1^2 (b) m_1^2+m_2^2-2m_3^2 (c) m_1^2+m_3^2-2m_2^2 (d) none of these

Let A D be a median of the A B Cdot If A Ea n dA F are medians of the triangle A B Da n dA D C , respectively, and A D=m_1,A E=m_2,A F=m_3, then (a^2)/8 is equal to (a) m_2^2+m_3^2-2m_1^2 (b) m_1^2+m_2^2-2m_3^2 (c) m_1^2+m_3^2-2m_2^2 (d) none of these

Let A D be a median of the A B Cdot If A Ea n dA F are medians of the triangle A B Da n dA D C , respectively, and A D=m_1,A E=m_2,A F=m_3, then (a^2)/8 is equal to (a) m_2^2+m_3^2-2m_1^2 (b) m_1^2+m_2^2-2m_3^2 (c) m_1^2+m_3^2-2m_2^2 (d) none of these

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

From the following sets quantum number state which are possible. Explain why the other are not permitted ? a. n = 0, l = 0, m= 0, s = + 1//2 b. n = 1, l = 0, m= 0, s = - 1//2 c. n = 1, l = 1, m= 0, s = + 1//2 d. n = 1, l = 0, m= +1, s = + 1//2 e. n = 0, l = 1, m= -1, s = - 1//2 f. n = 2, l = 2, m= 0, s = - 1//2 g. n = 2, l = 1, m= 0, s = - 1//2

From the following sets quantum number state which are possible. Explain why the other are not permitted ? a. n = 0, l = 0, m= 0, s = + 1//2 b. n = 1, l = 0, m= 0, s = - 1//2 c. n = 1, l = 1, m= 0, s = + 1//2 d. n = 1, l = 0, m= +1, s = + 1//2 e. n = 0, l = 1, m= -1, s = - 1//2 f. n = 2, l = 2, m= 0, s = - 1//2 g. n = 2, l = 1, m= 0, s = - 1//2

For the natural number m, n, if ( 1- y ) ^(m) (1 + y) ^( n) =1 + a _(1) y + a _(2) y ^(2) + ...+ a _( m + n) y ^( m +n) and a _(1) = a _(2) = 10, then the value of (m+n) is equal to :

If \ ^m C_1=\ \ ^n C_2 then which is correct a. 2m=n b. 2m=n(n+1) c. 2m=(n-1) d. 2n=m(m-1)

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these