Home
Class 11
MATHS
The value of lim(x->0)([(100 x)/(sinx)]+...

The value of `lim_(x->0)([(100 x)/(sinx)]+[(99sinx)/x])` (where [.] represents the greatest integral function) is (a)`199` (b) ` 198` (c)` 0 ` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)([(100x)/(sin x)]+[(99sin x)/(x)]) , [.] denotes the greatest integer function,is

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

The value of lim_(x to 0) (sinx)/(3) [5/x] is equal to [where [.] represent the greatest integer function)

The value of lim_(xrarr0)[(x)/(sinx)] , where [.] represents the greatest integer function,is

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist