Home
Class 11
MATHS
If a^2+b^2=1 t h e n (1+b+i a)/(1+b-i a...

If `a^2+b^2=1` t h e n ` (1+b+i a)/(1+b-i a)=` `1` b. `2` c. `b+i a` d. `a+i b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=1+i, then a^(2) equals 1-i b.2i .(1+i)(1-i) d.(i-1)

If A=[[a+i b, c+i d],[-c+i d, a-i b]]a n da^2+b^2+c^2+d^2=1,t h e nA^(-1) is equal to a.[[a+i b,-c+i d],[-c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If A : B=1/2:1/3n a d B : C=1/2:1/3, t h e n A : B : C is equal to 1:2:6 b. 3:2:6 c. 2:3:3 d. 9:6:4

If A=[[1,-1],[ 2, 1]],B=[[a,1],[b,-1]]a n d(A+B)^2=A^2+B^2+2A B ,t h e n a.a=-1 b. a=1 c. b=2 d. b=-2

If a :(b+c)=1:3 a n d c :(a+b)=5:7, t h e b :(a+c) is equal to 1:2 b. 1:3 c. 2:3 d. 2:1

If i^(2)=1, then the sum i+i^(2)+i^(3)+ upto 1000 terms is equal to 1 b.-1 c.i d.0

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

If A=[i-i-i i]a n dB=[1-1-1 1],t h e nA^8 equals 4B b. 128 B c. -128 B d. -64 B

A real value of x satisfies the equation (3-4i x)/(3+4i x)=a-i b(a , b in RR), if a^2+b^2= a. 1 b. -1 c. 2 d. -2