Home
Class 12
MATHS
Prove that (^n C0)/1+(^n C2)/3+(^n C4)/5...

Prove that `(^n C_0)/1+(^n C_2)/3+(^n C_4)/5+(^n C_6)/7+dot=(2^n)/(n+1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that (C_0)/(1)+ (C_2)/(3) + (C_4)/(5) + (C_6)/(7) +…….= (2^n)/(n+ 1)

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

Prove that ^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that : C_0 + C_1/2 + C_2/3 + ….. + C_n/(n+1) = (2^(n+1) - 1)/(n+1)

Prove that .^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .