Home
Class 11
MATHS
In an A.P. if S1=T1+T2+T3+.....+Tn(nod d...

In an A.P. if `S_1=T_1+T_2+T_3+.....+T_n(nod d)dotS_2=T_2+T_4+T_6+.........+T_(n-1)` , then find the value of `S_1//S_2` in terms of `ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

In an A.P. if S_1=T_1+T_2+T_3+.....+T_n (n is odd) S_2=T_2+T_4+T_6+.........+T_(n-1) , then find the value of S_1//S_2 in terms of ndot

In an A.P. if S_1=T_1+T_2+T_3+.....+T_n (n is odd) S_2=T_2+T_4+T_6+.........+T_(n-1) , then find the value of S_1//S_2 in terms of ndot

In an A.P.if S_(1)=T_(1)+T_(2)+T_(3)+....+T_(n)(nodd)dot S_(2)=T_(2)+T_(4)+T_(6)+.........+T_(n) then find the value of S_(1)/S_(2) in terms of n.

In an A.P.if S_(1)=T_(1)+T_(2)+T3+...+T_(n) (n odd S_(2)=T_(1)+T_(3)+T_(5)+...+T_(n) then (S_(1))/(S_(2))=

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot

In a harmonic progression t_(1), t_(2), t_(3),……………., it is given that t_(5)=20 and t_(6)=50 . If S_(n) denotes the sum of first n terms of this, then the value of n for which S_(n) is maximum is

In a harmonic progression t_(1), t_(2), t_(3),……………., it is given that t_(5)=20 and t_(6)=50 . If S_(n) denotes the sum of first n terms of this, then the value of n for which S_(n) is maximum is

Suppose a series of n terms given by S_(n)=t_(1)+t_(2)+t_(3)+ . . . . +t_(n) then S_(n-1)=t_(1)+t_(2)+t_(3)+ . . . . +t_(n-1),nge1 subtracting we get S_(n)-S_(n-1)=t_(n),nge2 surther if we put n=1 is the first sum then S_(1)=t_(1) thus w can write t_(n)=S_(n)-S_(n-1),nge2 and t_(1)=S_(1) Q. The sum of n terms of a series is a.2^(n)-b . where a and b are constant then the series is