Home
Class 11
MATHS
("lim")(xvec1)(xsin(x-[x]))/(x-1),w h e ...

`("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot]` denotes the greatest integer function is equal to 0 (b) `-1` (c) non-existent (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

("lim")_(x→0^+)("sin"[cosx])/(1-[cosx]) ([.] denotes the greatest integer function) is equal to equal to 1 (b) equal to 0 does not exist (d) none of these

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is