Home
Class 11
MATHS
Let Zp=rp(costhetap+isinthetap),p=1,2,3a...

Let `Z_p=r_p(costheta_p+isintheta_p),p=1,2,3a n d1/(Z_1)+1/(Z_2)+1/(Z_3)=0.` Consider the ` A B C` formed formed by `(cos2theta_1+isin2theta_1)/(Z_1),(cos2theta_2+isin2theta_2)/(Z_2),(cos2theta_3+isin2theta_3)/(Z_3)` Prove that origin lies inside triangle `A B Cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (costheta+isintheta)(cos2theta+isin2theta)…..(cosntheta+isinntheta)=1 , then the value of theta , is

Show that, ((cos2theta+isin2theta)^3(cos3theta-isin3theta)^4)/((cos3theta+isin3theta)^2(cos4theta+isin4theta)^(-3))=1

State true or false: If z= (cos2theta+isin2theta)/(costheta+isintheta) then z is unimodular.

(sin3theta)/(2cos2theta+1)=(1)/(2) if (n in Z)

If z = (3)/( 2 + cos theta + I sin theta) , then prove that z lies on the circle.

Let z_(1)=r_(1)(cos theta_(1)+i sin theta_(1)) and z_(2)=r_(2)(cos theta_(2)+i sin theta_(2)) be two complex numbers then prove the following

If z=1-cos theta+i sin theta, then |z|=2(sin theta)/(2) b.2(sin theta)/(2)c.2|(sin theta)/(2)|d.2|(cos theta)/(2)|