Home
Class 11
MATHS
("lim")(xvec0)[(sin(sgn(x)))/((sgn(x)))]...

`("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))],` where`[dot]` denotes the greatest integer function, is equal to 0 (b) 1 (c) `-1` (d) does not exist

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

(lim)_(xvec-7)([x]^2+15[x]+56)/("sin"(x+7)"sin"(x+8))= (where [.] denotes the greatest integer function) a. is 0 b. is 1 c. is -1 d. does not exist

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

lim_(x rarr0)[min(y^(2)-4y+11)(sin x)/(x)](where[.] denotes the greatest integer function is 5(b)6(c)7(d) does not exist