Home
Class 11
MATHS
If a1x^3 + b1x² + c1x + d1 = 0 and a2x^...

If `a_1x^3 + b_1x² + c_1x + d_1 = 0` and `a_2x^3 + b_2x^2+ c_2x + d_2 = 0` have a pair of repeated roots common, then prove that `|[3a_1,2b_1,c_1],[3a_2,2b_2,c_2],[a_2b_1-a_1b_2,c_1a_2-c_2a_1,d_1a_2-d_2a_1]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1x^3 + b_1x² + c_1x + d_1 = 0 and a_2x^3 + b_2x^2+ c_2x + d_2 = 0 have a pair of repeated roots common, then prove that |[3a_1,2b_1,c_1],[3a_2,2b_2,c_2],[a_2b_1-a_1b_2,c_1a_2-c_2a_1,d_1a_2-d_2a_1]|=0

If a_(1)x^(2)+b_(1)x+c_(1)=0 and a_(2)x^(2)+b_(2)x+c_(2)=0 has a common root,then the common root is

Prove that |[1,a,a^2,a^3+bcd] , [1,b,b^2,b^3+cda] , [1,c,c^2,c^3+dab] , [1,d,d^2,d^3+abc]|=0

Three linear equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0,a_3x+b_3y+c_3z=0 are consistent if (A) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 (B) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=-1 (C) a_1b_1c_1+a_2b_2c_2+a_3b_3c_3=0 (D) none of these