Home
Class 11
MATHS
If a ,b ,c are in A.P., then prove that...

If `a ,b ,c` are in A.P., then prove that: `(a-c)^2=4(b^2-a c)`, `a^3+4b^3+c^3=3b(a^2+c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in A.P.then prove that: (a-c)^(2)=4(b^(2)-ac)a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2))

If a,b,c are in A.P. prove that (a-c)^(2)=4(a-b)(b-c)

If a, b, c are in A.P., prove that : a^3+4b^3+c^3=3b (a^2+c^2) .

If a,b,c are in A.P.,prove that 8b^(3)-a^(3)-c^(3)=3ac(a+c)

If a ,b ,c are in A.P., prove that: i. (a-c)^2=4(a-b)(b-c) ii. a^2+c^2+4a c=2(a b+b c+c a) iii. a^3+c^3+6a b c=8b^3

If a, b, c are In A.P., then show that, (a+2b-c) (2b+c-a)(c+a-b) = 4abc

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

If a, b, c are in A.P., prove that a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2)).

If a, b, c are in A.P., prove that a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2)).