Home
Class 12
MATHS
If |z-2-3i|=1 ,then the greatest value o...

If `|z-2-3i|=1` ,then the greatest value of `|z|` is `sqrt(k)+m,` then evaluate `sqrt((k+m)+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+1+3i|=1 ,then the least value of |z| is sqrt(k)+m ,then evaluate sqrt(k-m)

If |z+2i|<=2, then then the greatest value of |z-sqrt(3)+i| is

If |z+2i|<=2, then the greatest value of |z-sqrt(3)+i|

If |z+2i|<=2, then the greatest value of |z-sqrt(3)+i|

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

If z lies on the locus |(z+2)/(z+i)|=2 and by transformation w rarr z+((4)/(3)+sqrt((20)/(9))i) (say) a new locus is formed,then the greatest value of |w| is (2)/(3)(sqrt(m)+sqrt(n)) ; then evaluate |m-n|

If |z – 2 + i| ge2 , then find the greatest and least value of |z|.

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :