Home
Class 11
MATHS
The solution of the equation 8^(1+|cosx...

The solution of the equation `8^(1+|cosx|+|cos^2x|+|cos^3x|+.........) = 4^3` in the interval `(-pi,pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x+1=0 in the interval [0, 2pi] is equal to

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

The solutions of the equation sin x+2sin2x+sin3x=cos x+3cos2x+cos3x in the interval 0<=x<=2 pi, are (pi)/(8),(5 pi)/(8),(2 pi)/(3)(b)(pi)/(8),(5 pi)/(8),(9 pi)/(8),(13 pi)/(8)(1 pi)/(3),(9 pi)/(3),(2 pi)/(3),(13 pi)/(8) (d) (pi)/(8),(5 pi)/(8),(9 pi)/(3),(4 pi)/(3),(4 pi)/(3),(9 pi)/(3),(2 pi)/(3),(13 pi)/(8)(d)

Number of solution of the equation sin 2x + cos 2x + sin x + cos x + 1 = 0 In the interval, (0, pi//2) is

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

Number of solution(s) of the equation (sin x)/(cos3x)+(sin3x)/(cos3x)+(sin2x)/(cos27x)=0 in the interval (0,(pi)/(4)) is