Home
Class 11
MATHS
The principal solution of the trigonomet...

The principal solution of the trigonometric equation `sqrt(3)sec theta+2=0` is 1.` (pi)/(6)` 2.`(2 pi)/(3)` 3.`(pi)/(6)` 4.`(5pi)/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

((pi)/(4))+((2 pi)/(3))-((pi)/(6))

(pi)/(4)+(2 pi)/(3)-(pi)/(6)

The angle of intersection of the curves r=sin theta+cos theta and r=2sin theta is 1. (pi)/(6) 2. (pi)/(3) 3. (pi)/(4) 4. (pi)/(2)

The smallest positive angle which satisfies the equation 2sin^(2)theta+sqrt(3)cos theta+1=0 is (5 pi)/(6)b(2 pi)/(3)c*(pi)/(3)d*(pi)/(6)

The value of theta satisfying the given equation cos theta+sqrt(3)sin theta=2, is (A) (pi)/(3)(B)(5 pi)/(3)(C)(2 pi)/(3) (D) (4 pi)/(3)

Find the value of the other five trigonometric functions : sec theta=(13)/(5),(3 pi)/(2)

Prove that: 2(sin pi)/(6)sec(pi)/(3)-4(sin(5 pi))/(6)(cos pi)/(4)=1

The smallest value of theta satisfying the equation sqrt(3)(cot theta+tan theta)=4 is 2 pi/3 b.pi/3c. pi/6d. pi/12

Prove that quad quad 3sin(pi)/(6) sec (5 pi)/(6)(5 pi)/(6)(pi)/(4)=1

One of the general solutions of sqrt(3)cos theta-3sin theta=4sin2 theta cos3 theta is m pi+(pi)/(18),m in Z(m pi)/(2)+(pi)/(6),AA m in Zm(pi)/(3)+(pi)/(18),m in Z none of these